Defining polynomial
\(x^{12} + 40\) ![]() |
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Discriminant root field: | $\Q_{5}(\sqrt{5\cdot 2})$ |
Root number: | $-1$ |
$|\Aut(K/\Q_{ 5 })|$: | $4$ |
This field is not Galois over $\Q_{5}.$ |
Intermediate fields
$\Q_{5}(\sqrt{5\cdot 2})$, 5.3.2.1, 5.4.3.4, 5.6.5.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{5}$ |
Relative Eisenstein polynomial: | \( x^{12} + 40 \) ![]() |