Properties

Label 5.12.11.2
Base \(\Q_{5}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $4$
This field is not Galois over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{5})$, 5.3.2.1, 5.4.3.2, 5.6.5.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{12} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{11} + 2z^{10} + z^{9} + 2z^{6} + 4z^{5} + 2z^{4} + z + 2$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_4\times S_3$ (as 12T11)
Inertia group:$C_{12}$ (as 12T1)
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$12$
Wild slopes:None
Galois mean slope:$11/12$
Galois splitting model:$x^{12} - 4 x^{11} + 9 x^{10} - 20 x^{9} + 40 x^{8} - 64 x^{7} + 81 x^{6} - 81 x^{5} + 65 x^{4} - 40 x^{3} + 19 x^{2} - 6 x + 1$