Defining polynomial
| \( x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44 \) |
Invariants
| Base field: | $\Q_{5}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{5}$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 5 })|$: | $12$ |
| This field is Galois over $\Q_{5}$. | |
Intermediate fields
| $\Q_{5}(\sqrt{*})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5*})$, 5.3.2.1 x3, 5.4.2.1, 5.6.4.1, 5.6.5.1 x3, 5.6.5.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{5}(\sqrt{*})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} - x + 2 \) |
| Relative Eisenstein polynomial: | $ x^{6} - 5 \in\Q_{5}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $D_6$ (as 12T3) |
| Inertia group: | Intransitive group isomorphic to $C_6$ |
| Unramified degree: | $2$ |
| Tame degree: | $6$ |
| Wild slopes: | None |
| Galois mean slope: | $5/6$ |
| Galois splitting model: | $x^{12} - 3 x^{11} + 4 x^{10} - 3 x^{7} - x^{6} + 3 x^{5} + 4 x^{2} + 3 x + 1$ |