Properties

Label 5.10.19.13
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(19\)
Galois group $C_5^2 : C_4$ (as 10T10)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 20 x^{5} + 80 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $19$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{10} - 20 x^{5} + 1080 \)

Invariants of the Galois closure

Galois group:$C_5:F_5$ (as 10T10)
Inertia group:$C_5^2 : C_4$
Unramified degree:$1$
Tame degree:$4$
Wild slopes:[7/4, 9/4]
Galois mean slope:$211/100$
Galois splitting model:$x^{10} - 20 x^{5} + 80$