Properties

Label 5.10.17.27
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(17\)
Galois group $C_{10}$ (as 10T1)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 10 x^{8} + 10 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $17$
Discriminant root field: $\Q_{5}(\sqrt{5*})$
Root number: $-1$
$|\Gal(K/\Q_{ 5 })|$: $10$
This field is Galois and abelian over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{5*})$, 5.5.8.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{10} - 60 x^{8} + 900 x^{6} + 10 \)

Invariants of the Galois closure

Galois group:$C_{10}$ (as 10T1)
Inertia group:$C_{10}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$17/10$
Galois splitting model:$x^{10} + 110 x^{8} - 220 x^{7} - 275 x^{6} - 18084 x^{5} + 12100 x^{4} - 329120 x^{3} - 503360 x^{2} + 13939200 x + 31719424$