Properties

Label 5.10.16.7
Base \(\Q_{5}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(16\)
Galois group $C_{10}$ (as 10T1)

Related objects

Learn more about

Defining polynomial

\( x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $5$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{5}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 5 })|$: $10$
This field is Galois and abelian over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{*})$, 5.5.8.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{*})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 2 \)
Relative Eisenstein polynomial:$ x^{5} + 20 x^{4} + 5 \in\Q_{5}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{10}$ (as 10T1)
Inertia group:Intransitive group isomorphic to $C_5$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$8/5$
Galois splitting model:$x^{10} + 10 x^{8} - 10 x^{7} + 90 x^{6} - 49 x^{5} + 125 x^{4} + 70 x^{3} + 95 x^{2} + 10 x + 1$