Properties

Label 5.10.16.34
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(16\)
Galois group $(C_5^2 : C_8):C_2$ (as 10T28)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 20 x^{7} + 5 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{5}$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{10} - 20 x^{7} + 100 x^{4} + 5 \)

Invariants of the Galois closure

Galois group:$D_5^2.C_4$ (as 10T28)
Inertia group:$C_5^2 : C_8$
Unramified degree:$2$
Tame degree:$8$
Wild slopes:[15/8, 15/8]
Galois mean slope:$367/200$
Galois splitting model:$x^{10} - 20 x^{7} + 50 x^{6} - 400 x^{4} - 500 x^{3} - 175 x^{2} - 320$