Properties

Label 5.10.15.16
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(15\)
Galois group $F_{5}\times C_2$ (as 10T5)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 10 x^{6} + 10 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{5}(\sqrt{5*})$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $2$
This field is not Galois over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{5*})$, 5.5.7.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{10} - 60 x^{6} + 900 x^{2} + 10 \)

Invariants of the Galois closure

Galois group:$C_2\times F_5$ (as 10T5)
Inertia group:$F_5$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:[7/4]
Galois mean slope:$31/20$
Galois splitting model:$x^{10} + 10 x^{8} + 35 x^{6} - x^{5} + 50 x^{4} - 5 x^{3} + 25 x^{2} - 5 x + 4$