Properties

Label 5.10.13.5
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(13\)
Galois group $D_5\times C_5$ (as 10T6)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 20 x^{5} + 15 x^{4} + 5 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $13$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $5$
This field is not Galois over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial:\( x^{10} + 80 x^{8} - 20 x^{5} + 40 x^{4} + 105 \)

Invariants of the Galois closure

Galois group:$C_5\times D_5$ (as 10T6)
Inertia group:$D_5$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2]
Galois mean slope:$13/10$
Galois splitting model:$x^{10} - 15 x^{8} - 10 x^{7} + 55 x^{6} + 53 x^{5} - 40 x^{4} - 50 x^{3} - 5 x^{2} + 5 x + 1$