Properties

Label 5.10.13.1
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(13\)
Galois group $D_5$ (as 10T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 15 x^{4} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification exponent $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $13$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $10$
This field is Galois over $\Q_{5}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{5}(\sqrt{5})$, 5.5.6.2 x5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{10} + 15 x^{4} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{4} + 3$,$z^{5} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois group:$D_5$ (as 10T2)
Inertia group:$D_5$ (as 10T2)
Wild inertia group:$C_5$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:$[3/2]$
Galois mean slope:$13/10$
Galois splitting model:$x^{10} + 5 x^{8} - 10 x^{7} + 5 x^{6} - 28 x^{5} + 15 x^{4} - 10 x^{3} + 30 x^{2} + 40 x + 16$