Properties

Label 5.10.12.4
Base \(\Q_{5}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(12\)
Galois group $C_5^2 : C_8$ (as 10T18)

Related objects

Learn more about

Defining polynomial

\( x^{10} + 10 x^{5} + 50 x^{4} + 25 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $10$
Ramification exponent $e$ : $5$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{5}$
Root number: $1$
$|\Aut(K/\Q_{ 5 })|$: $1$
This field is not Galois over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{*})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 2 \)
Relative Eisenstein polynomial:$ x^{5} + 5 t x^{2} + 5 \in\Q_{5}(t)[x]$

Invariants of the Galois closure

Galois group:$C_5:D_5.C_4$ (as 10T18)
Inertia group:Intransitive group isomorphic to $C_5:D_5$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[3/2, 3/2]
Galois mean slope:$73/50$
Galois splitting model:$x^{10} + 60 x^{6} - 240 x^{5} - 350 x^{2} + 1600 x - 1088$