Properties

Label 43.14.13.9
Base \(\Q_{43}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(13\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 31347 \)

Invariants

Base field: $\Q_{43}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $13$
Discriminant root field: $\Q_{43}(\sqrt{43*})$
Root number: $-i$
$|\Gal(K/\Q_{ 43 })|$: $14$
This field is Galois and abelian over $\Q_{43}$.

Intermediate fields

$\Q_{43}(\sqrt{43*})$, 43.7.6.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{43}$
Relative Eisenstein polynomial:\( x^{14} + 31347 \)

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:$C_{14}$
Unramified degree:$1$
Tame degree:$14$
Wild slopes:None
Galois mean slope:$13/14$
Galois splitting model:Not computed