Properties

Label 43.12.6.2
Base \(\Q_{43}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(6\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 147008443 x^{2} + 164355439274 \)

Invariants

Base field: $\Q_{43}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{43}(\sqrt{*})$
Root number: $-1$
$|\Gal(K/\Q_{ 43 })|$: $12$
This field is Galois and abelian over $\Q_{43}$.

Intermediate fields

$\Q_{43}(\sqrt{*})$, 43.3.0.1, 43.4.2.2, 43.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:43.6.0.1 $\cong \Q_{43}(t)$ where $t$ is a root of \( x^{6} - x + 26 \)
Relative Eisenstein polynomial:$ x^{2} - 43 t \in\Q_{43}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$6$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:Not computed