Properties

Label 43.12.10.1
Base \(\Q_{43}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 430 x^{6} + 1347921 \)

Invariants

Base field: $\Q_{43}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $10$
Discriminant root field: $\Q_{43}$
Root number: $1$
$|\Gal(K/\Q_{ 43 })|$: $12$
This field is Galois and abelian over $\Q_{43}$.

Intermediate fields

$\Q_{43}(\sqrt{*})$, $\Q_{43}(\sqrt{43})$, $\Q_{43}(\sqrt{43*})$, 43.3.2.1, 43.4.2.1, 43.6.4.1, 43.6.5.1, 43.6.5.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{43}(\sqrt{*})$ $\cong \Q_{43}(t)$ where $t$ is a root of \( x^{2} - x + 3 \)
Relative Eisenstein polynomial:$ x^{6} - 43 t^{6} \in\Q_{43}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$2$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:Not computed