Properties

Label 37.6.3.1
Base \(\Q_{37}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 74 x^{4} + 1369 x^{2} - 202612 \)

Invariants

Base field: $\Q_{37}$
Degree $d$ : $6$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $3$
Discriminant root field: $\Q_{37}(\sqrt{37})$
Root number: $1$
$|\Gal(K/\Q_{ 37 })|$: $6$
This field is Galois and abelian over $\Q_{37}$.

Intermediate fields

$\Q_{37}(\sqrt{37})$, 37.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:37.3.0.1 $\cong \Q_{37}(t)$ where $t$ is a root of \( x^{3} - x + 2 \)
Relative Eisenstein polynomial:$ x^{2} - 37 t^{2} \in\Q_{37}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} - 47 x^{4} + 10 x^{3} + 495 x^{2} - 162 x - 729$