Properties

Label 37.12.8.1
Base \(\Q_{37}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 111 x^{9} + 4107 x^{6} - 50653 x^{3} + 14993288 \)

Invariants

Base field: $\Q_{37}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{37}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 37 })|$: $12$
This field is Galois and abelian over $\Q_{37}$.

Intermediate fields

$\Q_{37}(\sqrt{*})$, 37.3.2.1, 37.4.0.1, 37.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:37.4.0.1 $\cong \Q_{37}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} - 37 t^{3} \in\Q_{37}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed