Properties

Label 37.12.11.4
Base \(\Q_{37}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 2368 \)

Invariants

Base field: $\Q_{37}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $11$
Discriminant root field: $\Q_{37}(\sqrt{37})$
Root number: $-1$
$|\Gal(K/\Q_{ 37 })|$: $12$
This field is Galois and abelian over $\Q_{37}$.

Intermediate fields

$\Q_{37}(\sqrt{37})$, 37.3.2.1, 37.4.3.2, 37.6.5.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{37}$
Relative Eisenstein polynomial:\( x^{12} - 2368 \)

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:$C_{12}$
Unramified degree:$1$
Tame degree:$12$
Wild slopes:None
Galois mean slope:$11/12$
Galois splitting model:Not computed