Defining polynomial
| \( x^{6} + 713 x^{3} + 138384 \) |
Invariants
| Base field: | $\Q_{31}$ |
| Degree $d$ : | $6$ |
| Ramification exponent $e$ : | $3$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $4$ |
| Discriminant root field: | $\Q_{31}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Gal(K/\Q_{ 31 })|$: | $6$ |
| This field is Galois and abelian over $\Q_{31}$. | |
Intermediate fields
| $\Q_{31}(\sqrt{*})$, 31.3.2.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{31}(\sqrt{*})$ $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{2} - x + 12 \) |
| Relative Eisenstein polynomial: | $ x^{3} - 31 t^{2} \in\Q_{31}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_6$ (as 6T1) |
| Inertia group: | Intransitive group isomorphic to $C_3$ |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | None |
| Galois mean slope: | $2/3$ |
| Galois splitting model: | $x^{6} - x^{5} + x^{4} - 113 x^{3} + 603 x^{2} + 3989 x + 5503$ |