Properties

Label 31.6.3.2
Base \(\Q_{31}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\(x^{6} - 961 x^{2} + 268119\)  Toggle raw display

Invariants

Base field: $\Q_{31}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{31}(\sqrt{31\cdot 3})$
Root number: $-i$
$|\Gal(K/\Q_{ 31 })|$: $6$
This field is Galois and abelian over $\Q_{31}.$

Intermediate fields

$\Q_{31}(\sqrt{31\cdot 3})$, 31.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:31.3.0.1 $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{3} - x + 9 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{2} - 31 t \)$\ \in\Q_{31}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} + 38 x^{4} - 7 x^{3} + 376 x^{2} - 128 x + 512$  Toggle raw display