Defining polynomial
| \( x^{14} - 59582 x^{8} + 887503681 x^{2} - 8914086971964 \) |
Invariants
| Base field: | $\Q_{31}$ |
| Degree $d$ : | $14$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $7$ |
| Discriminant exponent $c$ : | $7$ |
| Discriminant root field: | $\Q_{31}(\sqrt{31})$ |
| Root number: | $i$ |
| $|\Gal(K/\Q_{ 31 })|$: | $14$ |
| This field is Galois and abelian over $\Q_{31}$. | |
Intermediate fields
| $\Q_{31}(\sqrt{31})$, 31.7.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 31.7.0.1 $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{7} - x + 18 \) |
| Relative Eisenstein polynomial: | $ x^{2} - 31 t^{2} \in\Q_{31}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_{14}$ (as 14T1) |
| Inertia group: | Intransitive group isomorphic to $C_2$ |
| Unramified degree: | $7$ |
| Tame degree: | $2$ |
| Wild slopes: | None |
| Galois mean slope: | $1/2$ |
| Galois splitting model: | Not computed |