Properties

Label 31.12.10.1
Base \(\Q_{31}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 69161 x^{6} + 2869530624 \)

Invariants

Base field: $\Q_{31}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $10$
Discriminant root field: $\Q_{31}$
Root number: $1$
$|\Gal(K/\Q_{ 31 })|$: $12$
This field is Galois and abelian over $\Q_{31}$.

Intermediate fields

$\Q_{31}(\sqrt{*})$, $\Q_{31}(\sqrt{31})$, $\Q_{31}(\sqrt{31*})$, 31.3.2.1, 31.4.2.1, 31.6.4.1, 31.6.5.1, 31.6.5.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{31}(\sqrt{*})$ $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{2} - x + 12 \)
Relative Eisenstein polynomial:$ x^{6} - 31 t^{6} \in\Q_{31}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$2$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:Not computed