Properties

Label 3.9.22.15
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(22\)
Galois group $C_9:C_3$ (as 9T6)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 9 x^{7} + 15 x^{6} + 18 x^{5} + 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 9 x^{7} + 15 x^{6} + 18 x^{5} + 3 \)

Invariants of the Galois closure

Galois group:$C_9:C_3$ (as 9T6)
Inertia group:$C_9$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 3]
Galois mean slope:$22/9$
Galois splitting model:$x^{9} - 72 x^{7} - 45 x^{6} + 1539 x^{5} + 1197 x^{4} - 11343 x^{3} - 9747 x^{2} + 19494 x + 13357$