Properties

Label 3.9.19.7
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(19\)
Galois group $C_3^2 : S_3 $ (as 9T13)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{6} + 9 x^{2} + 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $19$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 6 x^{6} + 9 x^{2} + 3 \)

Invariants of the Galois closure

Galois group:$He_3:C_2$ (as 9T13)
Inertia group:$C_3^2 : S_3 $
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[3/2, 2, 5/2]
Galois mean slope:$121/54$
Galois splitting model:$x^{9} - 9 x^{6} + 9 x^{5} - 27 x^{4} - 3 x^{3} - 18 x^{2} - 9 x - 1$