Properties

Label 3.9.18.8
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(18\)
Galois group $C_3^2:Q_8$ (as 9T14)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 9 x + 15 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 9 x + 15 \)

Invariants of the Galois closure

Galois group:$PSU(3,2)$ (as 9T14)
Inertia group:$C_3^2:C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:[9/4, 9/4]
Galois mean slope:$25/12$
Galois splitting model:$x^{9} - 24 x^{6} + 108 x^{5} - 288 x^{4} - 384 x^{3} + 1440 x^{2} + 1953 x - 104$