Properties

Label 3.9.18.21
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(18\)
Galois group $C_3 \wr C_3 $ (as 9T17)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{6} + 18 x^{2} + 9 x + 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 6 x^{6} + 18 x^{2} + 9 x + 3 \)

Invariants of the Galois closure

Galois group:$C_3\wr C_3$ (as 9T17)
Inertia group:$C_3^2:C_3$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 7/3]
Galois mean slope:$58/27$
Galois splitting model:$x^{9} - 36 x^{7} - 12 x^{6} + 450 x^{5} + 333 x^{4} - 2238 x^{3} - 2475 x^{2} + 3105 x + 3959$