Properties

Label 3.9.18.1
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(18\)
Galois group $D_{9}$ (as 9T3)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{6} + 24 x^{3} + 9 x + 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 6 x^{6} + 24 x^{3} + 9 x + 3 \)

Invariants of the Galois closure

Galois group:$D_9$ (as 9T3)
Inertia group:$D_{9}$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[3/2, 5/2]
Galois mean slope:$37/18$
Galois splitting model:$x^{9} + 9 x^{7} - 6 x^{6} + 27 x^{5} - 36 x^{4} + 27 x^{3} - 54 x^{2} - 32$