Properties

Label 3.9.15.39
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(15\)
Galois group $C_3 \wr S_3 $ (as 9T20)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{7} + 6 x^{6} + 3 x^{3} + 6 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 6 x^{7} + 6 x^{6} + 3 x^{3} + 6 \)

Invariants of the Galois closure

Galois group:$C_3\wr S_3$ (as 9T20)
Inertia group:$(C_3^2:C_3):C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:[3/2, 3/2, 2]
Galois mean slope:$97/54$
Galois splitting model:$x^{9} - 3 x^{8} - 9 x^{7} + 6 x^{6} + 30 x^{5} + 36 x^{4} - 24 x^{3} - 93 x^{2} - 36 x + 13$