Properties

Label 3.9.15.27
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(15\)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $9$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.3.2, 3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 3 \)

Invariants of the Galois closure

Galois group:$C_3\times S_3$ (as 9T4)
Inertia group:$S_3\times C_3$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[3/2, 2]
Galois mean slope:$31/18$
Galois splitting model:$x^{9} - 3 x^{8} + 3 x^{7} - 6 x^{6} + 12 x^{5} - 3 x^{4} - 15 x^{3} + 15 x^{2} - 6 x + 1$