Defining polynomial
\( x^{9} + 9 x^{5} + 18 x^{3} + 27 x^{2} + 27 \) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 3 })|$: | $3$ |
This field is not Galois over $\Q_{3}.$ |
Intermediate fields
3.3.0.1, 3.3.4.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
Relative Eisenstein polynomial: | $ x^{3} + 6 t x^{2} + 6 t + 3 \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_3\times S_3$ (as 9T4) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Unramified degree: | $6$ |
Tame degree: | $1$ |
Wild slopes: | [2] |
Galois mean slope: | $4/3$ |
Galois splitting model: | $x^{9} + 6 x^{7} - 8 x^{6} - 9 x^{5} - 60 x^{4} - 15 x^{3} - 18 x^{2} + 108 x + 8$ |