Defining polynomial
\( x^{9} + 3 x^{2} + 6 \) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $9$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 3 })|$: | $1$ |
This field is not Galois over $\Q_{3}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: | \( x^{9} + 3 x^{2} + 6 \) |