Properties

Label 3.8.6.2
Base \(\Q_{3}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $8$
This field is Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.4.2.1, 3.4.3.1 x2, 3.4.3.2 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(3 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + z^{2} + 1$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$D_4$ (as 8T4)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{8} - 3 x^{7} + 4 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{3} + 4 x^{2} - 3 x + 1$