Properties

Label 3.7.6.1
Base \(\Q_{3}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)
Galois group $F_7$ (as 7T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $7$
Ramification exponent $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{7} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{6} + z^{5} + 2z^{3} + 2z^{2} + 1$
Associated inertia:$6$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$F_7$ (as 7T4)
Inertia group:$C_7$ (as 7T1)
Wild inertia group:$C_1$
Unramified degree:$6$
Tame degree:$7$
Wild slopes:None
Galois mean slope:$6/7$
Galois splitting model:$x^{7} - 3$