Properties

Label 3.6.8.3
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(8\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 18 x^{5} + 114 x^{4} + 326 x^{3} + 570 x^{2} + 528 x + 197\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification exponent $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $6$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 6 x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 2$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_3$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$4/3$
Galois splitting model:$x^{6} + 9 x^{4} - 5 x^{3} + 36 x^{2} - 12 x + 8$