Defining polynomial
| \( x^{6} + 6 x^{5} + 36 \) |
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$ : | $6$ |
| Ramification exponent $e$ : | $3$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $8$ |
| Discriminant root field: | $\Q_{3}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 3 })|$: | $3$ |
| This field is not Galois over $\Q_{3}$. | |
Intermediate fields
| $\Q_{3}(\sqrt{*})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \) |
| Relative Eisenstein polynomial: | $ x^{3} + 3 x^{2} + 6 t + 6 \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_3\times S_3$ (as 6T5) |
| Inertia group: | Intransitive group isomorphic to $C_3^2$ |
| Unramified degree: | $2$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 2] |
| Galois mean slope: | $16/9$ |
| Galois splitting model: | $x^{6} - 14 x^{3} + 63 x^{2} - 84 x + 77$ |