Properties

Label 3.6.10.1
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(10\)
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 18 x^{4} + 6 x^{3} + 162 x^{2} + 216 x + 90\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification exponent $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $2$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[5/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.5.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(9 t + 18\right) x + 9 t + 12 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois group:$D_6$ (as 6T3)
Inertia group:Intransitive group isomorphic to $S_3$
Wild inertia group:$C_3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[5/2]$
Galois mean slope:$11/6$
Galois splitting model:$x^{6} - 18$