Properties

Label 3.4.3.1
Base \(\Q_{3}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)
Galois group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $2$
This field is not Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{4} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + z^{2} + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$D_4$ (as 4T3)
Inertia group:$C_4$ (as 4T1)
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model: $x^{4} + 3$ Copy content Toggle raw display