Properties

Label 3.3.5.3
Base \(\Q_{3}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(5\)
Galois group $S_3$ (as 3T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 9 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[5/2]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{3} + 9 x + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois group:$S_3$ (as 3T2)
Inertia group:$S_3$ (as 3T2)
Wild inertia group:$C_3$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:$[5/2]$
Galois mean slope:$11/6$
Galois splitting model: $x^{3} + 12$ Copy content Toggle raw display