Properties

Label 3.3.4.2
Base \(\Q_{3}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(4\)
Galois group $C_3$ (as 3T1)

Related objects

Learn more about

Defining polynomial

\(x^{3} - 3 x^{2} + 3\)  Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $3$
This field is Galois and abelian over $\Q_{3}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{3} - 3 x^{2} + 3 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$C_3$ (as 3T1)
Inertia group:$C_3$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{3} - 3 x^{2} + 3$  Toggle raw display