Properties

Label 3.2.0.1
Base \(\Q_{3}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$ (as 2T1)

Related objects

Learn more about

Defining polynomial

\(x^{2} - x + 2\)  Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $2$
Ramification exponent $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $2$
This field is Galois and abelian over $\Q_{3}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 3 \)$\ \in\Q_{3}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:trivial
Unramified degree:$2$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{2} - x + 2$