Properties

Label 3.15.20.99
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(20\)
Galois group $C_{15}$ (as 15T1)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 42 x^{14} + 27 x^{13} + 31 x^{12} + 45 x^{11} + 45 x^{10} + 41 x^{9} + 30 x^{8} + 42 x^{7} + 8 x^{6} + 75 x^{5} + 18 x^{4} + 42 x^{3} + 24 x^{2} + 51 x + 19 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $15$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

3.3.4.3, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t^{4} + 24 t^{3} + 15 t^{2} + 6 t + 12\right) x^{2} + \left(9 t^{4} + 18 t^{3} + 18 t^{2} + 9 t + 18\right) x + 9 t^{4} + 15 t^{3} + 15 t^{2} + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$5$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{15} - 3 x^{14} - 114 x^{13} + 130 x^{12} + 5361 x^{11} + 3249 x^{10} - 120562 x^{9} - 259107 x^{8} + 1090119 x^{7} + 4464049 x^{6} + 785697 x^{5} - 20966655 x^{4} - 43817519 x^{3} - 38133582 x^{2} - 14510214 x - 1701701$