Properties

Label 3.15.20.65
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(20\)
Galois group $C_{15}$ (as 15T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 30 x^{14} + 360 x^{13} + 2175 x^{12} + 6840 x^{11} + 11016 x^{10} + 13050 x^{9} + 21060 x^{8} + 9720 x^{7} + 24084 x^{6} + 55728 x^{5} + 167184 x^{4} + 79137 x^{3} + 474822 x^{2} + 138024\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $15$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

3.3.4.2, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 6 x^{2} + 9 t^{3} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 2$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_3$
Unramified degree:$5$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$4/3$
Galois splitting model: $x^{15} - 3 x^{14} - 36 x^{13} + 151 x^{12} + 306 x^{11} - 2250 x^{10} + 1258 x^{9} + 10467 x^{8} - 18066 x^{7} - 7856 x^{6} + 39705 x^{5} - 23016 x^{4} - 8527 x^{3} + 5730 x^{2} + 2244 x + 199$ Copy content Toggle raw display