Properties

Label 3.15.20.100
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(20\)
Galois group $C_{15}$ (as 15T1)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 39 x^{14} + 42 x^{13} + 55 x^{12} + 15 x^{11} + 57 x^{10} + 50 x^{9} + 15 x^{8} + 45 x^{7} + 35 x^{6} + 51 x^{5} + 45 x^{4} + 24 x^{3} + 69 x^{2} + 69 x + 73 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $15$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

3.3.4.1, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{4} + 24 t^{3} + 9 t^{2} + 24 t\right) x^{2} + \left(9 t^{4} + 9 t^{3} + 9\right) x + 3 t^{4} + 9 t^{3} + 6 t^{2} + 12 t + 15 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$5$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{15} - 3 x^{14} - 114 x^{13} + 165 x^{12} + 5277 x^{11} + 309 x^{10} - 119015 x^{9} - 163851 x^{8} + 1201692 x^{7} + 3201011 x^{6} - 2654712 x^{5} - 17750946 x^{4} - 19922550 x^{3} - 3294435 x^{2} + 4535715 x + 831403$