Properties

Label 3.15.15.51
Base \(\Q_{3}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(15\)
Galois group 15T52

Related objects

Learn more about

Defining polynomial

\( x^{15} - 3 x^{12} - 3 x^{11} + 3 x^{10} - 3 x^{9} + 3 x^{8} + 3 x^{7} - 3 x^{6} + 3 x - 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $15$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{15} - 3 x^{12} - 3 x^{11} + 3 x^{10} - 3 x^{9} + 3 x^{8} + 3 x^{7} - 3 x^{6} + 3 x - 3 \)

Invariants of the Galois closure

Galois group:15T52
Inertia group:15T33
Unramified degree:$4$
Tame degree:$10$
Wild slopes:[11/10, 11/10, 11/10, 11/10]
Galois mean slope:$889/810$
Galois splitting model:$x^{15} - 6 x^{14} + 33 x^{13} - 52 x^{12} + 204 x^{11} + 288 x^{10} + 82 x^{9} + 2634 x^{8} + 1239 x^{7} + 5302 x^{6} + 10881 x^{5} + 4974 x^{4} + 8408 x^{3} + 16788 x^{2} + 9144 x + 1480$