Properties

Label 3.15.15.49
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 15 x^{14} + 24 x^{13} + 6 x^{12} + 21 x^{11} + 3 x^{10} + x^{9} + 3 x^{8} + 15 x^{7} + 9 x^{6} + 18 x^{5} + 25 x^{3} + 21 x^{2} + 9 x + 4 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $5$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.3.2, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t^{4} + 3 t^{2} + 3 t\right) x^{2} + \left(3 t^{3} + 6 t^{2} + 6\right) x + 6 t^{4} + 3 t^{3} + 6 t^{2} + 6 t + 6 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_5\times S_3$ (as 15T4)
Inertia group:Intransitive group isomorphic to $S_3$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2]
Galois mean slope:$7/6$
Galois splitting model:$x^{15} - 3 x^{14} + 18 x^{13} - 13 x^{12} + 378 x^{11} - 678 x^{10} + 2363 x^{9} + 966 x^{8} + 9105 x^{7} - 9552 x^{6} + 5115 x^{5} + 291 x^{4} - 768 x^{3} + 63 x^{2} + 18 x - 1$