Properties

Label 3.15.15.34
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group 15T44

Related objects

Learn more about

Defining polynomial

\( x^{15} + 24 x^{14} + 12 x^{13} + 3 x^{12} + 24 x^{11} + 6 x^{10} + x^{9} + 18 x^{8} + 12 x^{7} + 18 x^{6} + 3 x^{5} + 12 x^{4} + 19 x^{3} + 15 x^{2} + 9 x + 7 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{4} + 3 t^{3} + 3 t^{2} + 3 t\right) x^{2} + \left(3 t^{4} + 3\right) x + 3 t^{3} + 6 t^{2} + 6 t + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:15T44
Inertia group:Intransitive group isomorphic to $C_3^2:(C_3^3:C_2)$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2, 3/2, 3/2, 3/2, 3/2]
Galois mean slope:$727/486$
Galois splitting model:$x^{15} - 3 x^{14} - 2946 x^{13} + 57615 x^{12} + 2069277 x^{11} - 77319594 x^{10} + 223873337 x^{9} + 27148718595 x^{8} - 540347561913 x^{7} + 2718657893993 x^{6} + 65089944363519 x^{5} - 1693692847776387 x^{4} + 20530684903788623 x^{3} - 144656138022354831 x^{2} + 540008298412833288 x - 732754866776488181$