Properties

Label 3.15.15.32
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group 15T33

Related objects

Learn more about

Defining polynomial

\( x^{15} + 18 x^{14} + 12 x^{13} + 18 x^{12} + 3 x^{11} + 6 x^{10} + 10 x^{9} + 9 x^{8} + 18 x^{7} + 3 x^{5} + 6 x^{4} + 16 x^{3} + 18 x^{2} + 24 x + 13 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t^{4} + 6 t^{3} + 3 t^{2}\right) x^{2} + \left(6 t^{4} + 6 t^{2} + 6\right) x + 3 t^{4} + 6 t^{3} + 6 t^{2} + 3 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:15T33
Inertia group:Intransitive group isomorphic to $C_3:(C_3^3:C_2)$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2, 3/2, 3/2, 3/2]
Galois mean slope:$241/162$
Galois splitting model:$x^{15} - 33 x^{13} - 51 x^{12} + 297 x^{11} + 858 x^{10} - 295 x^{9} - 3960 x^{8} - 5676 x^{7} - 544 x^{6} + 10593 x^{5} + 23133 x^{4} + 28576 x^{3} + 20097 x^{2} + 6336 x + 199$