Properties

Label 3.15.15.3
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group 15T33

Related objects

Learn more about

Defining polynomial

\( x^{15} + 3 x^{14} + 18 x^{12} + 9 x^{11} + 12 x^{10} + 10 x^{9} + 12 x^{8} + 6 x^{6} + 12 x^{5} + 12 x^{4} + 25 x^{3} + 21 x^{2} + 9 x + 1 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t + 6\right) x^{2} + \left(6 t^{4} + 6 t^{2} + 3\right) x + 6 t^{4} + 3 t^{3} + 6 t^{2} + 6 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:15T33
Inertia group:Intransitive group isomorphic to $C_3:(C_3^3:C_2)$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2, 3/2, 3/2, 3/2]
Galois mean slope:$241/162$
Galois splitting model:$x^{15} + 6 x^{13} - 12 x^{12} - 45 x^{11} - 51 x^{10} - 3 x^{9} + 225 x^{8} + 435 x^{7} - 4 x^{6} - 585 x^{5} - 216 x^{4} + 403 x^{3} + 135 x^{2} - 201 x + 43$