Properties

Label 3.15.15.15
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Learn more about

Defining polynomial

\( x^{15} + 12 x^{14} + 6 x^{13} + 3 x^{12} + 3 x^{10} + 25 x^{9} + 24 x^{8} + 9 x^{7} + 3 x^{6} + 12 x^{5} + 6 x^{4} + 10 x^{3} + 24 x^{2} + 15 x + 16 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $15$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $5$
Discriminant exponent $c$ : $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $5$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.3.1, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{3} + 3 t^{2} + 3 t + 6\right) x^{2} + \left(6 t^{4} + 3 t^{3}\right) x + 6 t^{4} + 6 t^{3} + 6 t^{2} \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_5\times S_3$ (as 15T4)
Inertia group:Intransitive group isomorphic to $S_3$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:[3/2]
Galois mean slope:$7/6$
Galois splitting model:$x^{15} - 3 x^{14} + 21 x^{13} - 31 x^{12} + 207 x^{11} - 102 x^{10} + 947 x^{9} + 1488 x^{8} + 75 x^{7} + 14565 x^{6} - 16692 x^{5} + 31335 x^{4} - 35754 x^{3} - 125298 x^{2} + 86121 x + 21473$