Defining polynomial
| \( x^{12} - 9 x^{4} + 27 \) |
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $4$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $9$ |
| Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
| Root number: | $i$ |
| $|\Aut(K/\Q_{ 3 })|$: | $6$ |
| This field is not Galois over $\Q_{3}$. | |
Intermediate fields
| $\Q_{3}(\sqrt{3*})$, 3.3.0.1, 3.4.3.1, 3.6.3.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{4} + \left(-3 t + 3\right) x^{3} + \left(-3 t^{2} + 3 t\right) x^{2} + 3 t^{2} - 3 \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_3\times D_4$ (as 12T14) |
| Inertia group: | Intransitive group isomorphic to $C_4$ |
| Unramified degree: | $6$ |
| Tame degree: | $4$ |
| Wild slopes: | None |
| Galois mean slope: | $3/4$ |
| Galois splitting model: | $x^{12} - 3 x^{11} + 2 x^{10} + 2 x^{9} - 3 x^{7} - x^{6} - 6 x^{5} + 28 x^{4} - 33 x^{3} + 18 x^{2} - 5 x + 1$ |