Properties

Label 3.12.21.26
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(21\)
Galois group $S_3\wr C_2$ (as 12T36)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 6 x^{11} + 3 x^{10} - 12 x^{9} - 9 x^{7} - 9 x^{5} - 9 x^{4} - 6 x^{3} + 9 x^{2} - 9 x - 12 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $21$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $2$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.4.3.2, 3.6.10.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{12} - 6 x^{11} + 3 x^{10} - 12 x^{9} - 9 x^{7} - 9 x^{5} - 9 x^{4} - 6 x^{3} + 9 x^{2} - 9 x - 12 \)

Invariants of the Galois closure

Galois group:$S_3\wr C_2$ (as 12T36)
Inertia group:$(C_3\times C_3):C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:[9/4, 9/4]
Galois mean slope:$25/12$
Galois splitting model:$x^{12} - 2 x^{9} - 2 x^{3} + 1$